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The capability of rapid distortion theory to predict the long-time evolution of shearless
turbulence close to an impermeable surface has been seriously questioned in recent
years. However, experiments and large-eddy simulations performed at high Reynolds
number show that second-order turbulence statistics follow closely the predictions of
the theory elaborated by Hunt & Graham (1978). To clarify this issue, a theoretical
analysis is carried out in order to determine the relative magnitude of the vortical
corrections which were not taken into account in the original theory. By evaluating
the various terms of the enstrophy balance in the near-surface region, it is shown that
this relative magnitude is a decreasing function of the turbulent Reynolds number,
an argument reconciling most existing results. Hence the Hunt & Graham theory
appears to be a leading-order approximation capable of describing short- and long-
time evolutions of shear-free boundary layers in the limit of large Reynolds number.
The expression for the pressure fluctuation corresponding to this approximation is then
derived and approximate Reynolds stress budgets are obtained. These budgets are used
to predict and discuss the characteristics of the intercomponent energy transfer near
a flat surface in both time-decaying and spatially decaying turbulence. In agreement
with available results, predictions reveal that tangential velocity components transfer
energy towards the normal component in the former case, while they generally receive
energy from this component in the latter case.

1. Introduction
Turbulence near impermeable surfaces is of central importance in both engineering

and geophysical flows and has been a constant subject of investigation for almost a
century. While turbulence dynamics in the near-surface region are often dominated
by effects of shear, shear-free turbulent boundary layers are relevant to many physical
situations. This is especially the case in gas–liquid flows when the liquid is driving
the whole motion. In such situations, effects of surface boundary conditions are not
obscured by those related to the existence of a mean shear an become much more
prominent than in wall-bounded shear flows. In particular, provided the incoming
turbulence is isotropic, the boundary conditions are entirely responsible for turbulence
anisotropy in the boundary layer.

The canonical situation in which homogeneous isotropic turbulence evolves in the
presence of a flat surface has been investigated theoretically, experimentally and
numerically. However, despite significant effort, no general agreement on the basic
concepts describing the effects of the surface has been reached so far. Most of the open
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questions and controversies go back to the works of Hunt & Graham (1978) and
Perot & Moin (1995a) (hereinafter referred to as HG and PM, respectively). Using
the techniques of rapid distortion theory (RDT), HG derived a theoretical model
describing the inviscid processes at work in a turbulent shear-free boundary layer.
Basically this model describes how an isotropic turbulent flow responds instanta-
neously to the insertion of an impermeable surface. Owing to incompressibility, this
instantaneous response is obtained by adding an irrotational component to the initial
turbulent velocity field, so as to satisfy the kinematic boundary condition at the
surface. This irrotational contribution represents the image of eddies with respect to
the surface; its evaluation in spectral space allows various statistics characterizing the
short-time response of the turbulent flow to be evaluated. One of the main predictions
of the HG theory is that the tangential turbulent intensities increase at the expense
of the normal ones near the surface, a feature frequently interpreted as a traceless
energy transfer between the three velocity components.

The HG model was initially derived to explain the experimental results obtained
by Uzkan & Reynolds (1967) and Thomas & Hancock (1977) who studied grid
turbulence convected by a uniform stream past a rigid wall moving with the free-
stream speed. Their measurements showed that, within a surface layer whose thickness
is about one integral length scale, velocity fluctuations normal to the wall are
progressively damped as the distance to the wall decreases. The evolution of the
tangential components was found to be more complex. In the low-Reynolds-number
experiments of Uzkan & Reynolds (1967) (corresponding to a Reynolds number
ReT ≈ 90, where ReT is based on the turbulent kinetic energy per unit mass and
dissipation rate of the free-stream turbulence), the tangential fluctuations decreased
monotonically as the wall was approached, and HG attributed this behaviour to the
fact that the thickness δV of the viscous sublayer attached to the moving wall was
a large fraction of the integral scale L∞. In contrast, in the high-Reynolds-number
experiment of Thomas & Hancock (1977) (ReT ≈ 2000), δV was much smaller than
L∞ and the tangential fluctuations increased as the wall was approached, prior to
decreasing to zero in the viscous sublayer; in particular, the streamwise r.m.s. velocity
exhibited a marked peak in the wall-influenced region far downstream from the leading
edge of the moving wall. Most experimental findings of Thomas & Hancock (1977) are
predicted well by the HG theory and the low- and high-Reynolds-number evolutions
were qualitatively recovered in a coarse large-eddy simulation (LES) performed by
Biringen & Reynolds (1981).

More recently, Aronson, Johansson & Löfdahl (1997) performed an experiment
similar to that of Thomas & Hancock at a moderate Reynolds number (ReT ≈ 380).
They observed a peak in the tangential fluctuations solely near the leading edge
of the wall, whereas further downstream this peak disappeared almost completely.
This evolution, which is not predicted by the HG theory, agrees with the results of
direct numerical simulations (DNS) performed by PM in the case of freely evolving
turbulence subjected to the sudden insertion of a solid wall, a situation which, by
virtue of Taylor’s hypothesis, is equivalent to that of grid turbulence convected
past a moving wall. PM argued that the peack reported by Thomas & Hancock
could be due to turbulence production by a residual mean shear, whereas Aronson
et al. (1997) suggested that the frictional heating due to the moving belt could have
contaminated the hot wire determinations of the streamwise velocity. The crucial
point is that both investigations conclude that no maximum exists in the tangential
r.m.s. velocities at large time, i.e. t/T � 1 (t = 0 corresponds to the time at which
the wall is inserted and T is the large-eddy turnover time), whereas the existence of
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this maximum is one of the central predictions of the HG theory. Consequently these
two recent investigations seriously question the validity of the HG theory at large
time.

The mathematical assumptions used in the derivation of the original HG theory
(see also Hunt 1984) suggest that its results apply only during the early stages of
the flow, i.e. t/T � 1. Nevertheless, Hunt (1984) conjectured that the theory remains
valid for larger time in steady shearless flows, provided dissipation is almost constant
in the surface-influenced layer. He also suggested that for t/T > 1, the vorticity
of small eddies changes owing to the stretching and compression produced by the
impingement of large-scale motions on the surface, a nonlinear effect whose major
consequence is to generate an additional increase of the tangential velocities as the
surface is approached. The predictions of HG and Hunt (1984) have been compared
with measurements performed in statistically steady flows produced in stirred-grid
water tanks, either in the presence of a free surface (McDougall 1979; Brumley &
Jirka 1987) or near a sharp density interface (Hannoun, Fernando & List 1988;
Kit, Strang & Fernando 1997). Overall, the trends revealed by these experiments
are consistent with the predictions of the HG theory. In particular Brumley & Jirka
(1987) compared the vertical evolution of turbulent intensities, integral length scales
and energy spectra with theoretical predictions and found a convincing agreement,
except in the thin surface viscous sublayer where a strong reduction of the tangential
fluctuations was observed, probably because of the contamination of the free surface
by impurities. Hannoun et al. (1988) and Kit et al. (1997) also reported a general
agreement with the HG predictions; however they observed that in the top part
of the surface-influenced layer, the tangential intensities increased significantly more
than predicted by the original theory, especially in the low-wavenumber range. This
sharp increase was found to follow fairly well the predictions corresponding to Hunt’s
(1984) nonlinear correction.

A conceptually different explanation of the interactions between a freely evolving,
initially homogeneous, isotropic turbulence and a non-deformable surface suddenly
inserted in the flow was proposed by PM who put emphasis on the energy transfer
between the three r.m.s. velocity components. They performed DNS at different
Reynolds numbers (54 � ReT � 134 in most cases) with three different types of
boundary. The first was a permeable membrane (i.e. only the tangential velocities
were forced to vanish), while the other two were a shear-free surface (also studied
numerically in great detail by Walker, Leighton & Garza-Rios 1996, hereinafter
referred to as WLGR), and a solid wall. To analyse near-surface interactions,
PM defined two types of turbulent structures, ‘splats’ and ‘anti-splats’, which are
easily detected in computations as well as in recent experiments performed in open-
channel flows (e.g. Rashidi 1997 and Nagaosa 1999). The splats, also referred to as
upwellings, patches or updraughts in other studies (Pan & Banerjee 1995; Rashidi
1997; Kumar, Gupta & Banerjee 1998), are blobs of fluid impinging on the surface.
Such impingements produce stagnation points characterized by a negative gradient
of the normal velocity. Since stagnation points are associated with high pressure
levels, such events provide a negative contribution to the normal component of the
pressure–strain correlation and they transfer momentum to the motion parallel to the
surface. Then, when the tangential motions resulting from the impingement of two
neighbouring updraughts meet, another stagnation point where the normal velocity
experiences a positive gradient is produced. This results in fluid motion away from
the surface, an event called an anti-splat by PM (also referred to as downdraught
by other authors). As pointed out by PM, since downdraughts contribute positively
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to the normal component of the pressure–strain correlation, the coexistence of both
types of structures implies that the net (averaged) intercomponent energy transfer is
determined by the imbalance between updraughts and downdraughts, rather than by
the updraughts themselves as previously believed.

In their computations, PM observed that the intercomponent energy transfer was
significantly weaker close to a shear-free surface than close to a solid wall or a
permeable membrane. Since viscous effects are much stronger in the latter two
configurations than in the former one (for a given Reynolds number), this led them to
the conclusion that the strength of near-surface viscous effects determines the rate of
imbalance between splats and anti-splats. This view is completely different from that
provided by the HG theory where the increase of the tangential turbulent intensities
at the expense of the normal ones is due to a purely kinematic process. That the
imbalance between updraughts and downdraughts governs intercomponent energy
transfer was subsequently confirmed by WLGR and Nagaosa (1999). However, both
groups disagree with PM about the cause of this imbalance, which WLGR attribute
to the anisotropy induced by the vanishing of the normal r.m.s. velocity on the surface
(a kinematic process), whereas the explanation of Nagaosa, more specific to open-
channel flow, is based on the interaction of quasi-streamwise vortices with the surface.
Further, PM noticed two important features in the particular case of a shear-free
surface. First, they showed that the tangential turbulent intensities exhibit a peak at
the surface (also observed by WLGR), the relative intensity of which (normalized
by the free-stream intensity) increases with time. They suggested that this peak is
not related to that predicted by the HG theory, being due rather to the fact that
turbulence decays faster far from the surface than close to it because dissipation
is strongly reduced in the viscous sublayer. Second, they noticed that owing to the
smallness of pressure–strain correlations close to the surface, the evolution of the
turbulent intensities is essentially governed by a balance between dissipation, viscous
diffusion and turbulent transport. Since none of these terms appears in the HG
analysis, they concluded that this theory essentially provides the initial condition
for the velocity field, but that the subsequent evolution has little to do with RDT
predictions.

This overview shows that the present state of the art concerning the physics of shear-
free turbulent boundary layers is quite controversial. Recently, Calmet & Magnaudet
(2003) (hereinafter referred to as CM) reported results of a high-Reynolds-number
LES in a statistically steady open-channel flow (ReT ≈ 800). Since the anisotropy
of the turbulence entering the surface-influenced region was moderate, detailed
comparison of various second-order statistics with HG predictions was possible.
Despite the residual anisotropy and the inhomogeneity of the underlying turbulence,
this comparison revealed a close quantitative agreement on all second-order statistical
quantities outside the viscous sublayer. This agreement gave us a strong motivation to
revisit several aspects of the HG theory in order to clarify some of the controversies
summarized above. This new look at the conditions of validity and implications of the
existing theory is the essential goal of the present contribution. Our aim in this paper
is to understand with the aid of approximate enstrophy and energy budgets what the
main statistical effects of a flat surface on the underlying turbulence are, especially
after many turnover times. Clarifying these effects and elucidating the controversy
described above may have some bearing on turbulence modelling, since any model
aimed at predicting second-order turbulence statistics near impermeable surfaces
should reproduce the essential features of the fundamental situation considered
here.
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Figure 1. Sketch of the development of a turbulent shear-free boundary layer: (a) insertion
of a flat surface at t = 0; (b) two-layer structure at short time (t � L∞/u∞); (c) two-layer
structure at long time (t � L∞/u∞).

The governing equations of the problem are derived and commented on in § 2. In
§ 3 we determine the magnitude of long-term corrections to the HG theory. We also
derive the expression for the pressure fluctuation corresponding to the HG solution
and the associated Reynolds stress budget. In § 4 we examine the implications of the
theory with respect to intercomponent energy transfer mechanisms in two reference
situations, namely time-decaying (or freely evolving) turbulence, and spatially decaying
turbulence. A summary and final remarks are given in § 5. Some analytical extensions
of the HG theory are also reported in Appendices A and B, whereas Appendix C
re-examines the conditions of validity of Hunt’s (1984) nonlinear correction.

2. Statement of the problem
2.1. Governing equations

Let us consider an incompressible turbulent flow in which a flat impermeable surface
is suddenly inserted in the plane Y = 0 at time t =0 (figure 1a). The flow is assumed to
satisfy conditions of statistical homogeneity along the tangential directions x and z.
For simplicity we also assume that there is no mean flow or that the mean flow
is independent of Y, so that it can be accounted for by a suitable Galilean
transformation. We denote by v′(X, t) and p′(X, t) the velocity and pressure
fluctuations at time t and position X =(x, Y, z), and by v∞(X, t) and p∞(X, t)
the corresponding fields that would exist at time t if the surface were absent. The
impermeable surface forces the normal velocity to satisfy the kinematic condition

v′ · n = 0 for Y = 0 and t > 0, (1)

where n denotes the unit normal to the surface directed into the fluid. As is well
known, the velocity field v′(X, t) may be written at any time t � 0 in the form
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(Batchelor 1967, p. 87)

v′(X, t) = v∞(X, t) + ∇Φ(X, t) + ∇ × A(X, t), (2)

where Φ is a scalar potential and A is a vector potential subject to the solenoidality
condition

∇ · A = 0. (3)

Decomposition (2) and condition (3) imply that the vorticity ω′(X, t) = ∇ × v′(X, t) is
related to ω∞(X, t) = ∇ × v∞(X, t) through

ω′ = ω∞ − ∇2 A. (4)

Since v′ is divergence-free, the scalar potential satisfies the Laplace equation

∇2Φ = 0. (5)

From the transport equation of ω′, the governing equation of the vorticity disturbance
ωA = −∇2 A is found to be(

∂

∂t
− ν∇2

)
ωA + (v∞ + ∇Φ + vA) · ∇ωA − ωA · ∇(v∞ + ∇Φ + vA)

+ vA · ∇ω∞ − ω∞ · ∇vA = ω∞ · ∇(∇Φ) − ∇Φ · ∇ω∞, (6)

where ν is the kinematic viscosity and vA = ∇ × A is the vortical velocity disturbance.
At large Y, the surface-induced disturbance vanishes, so that

ωA → 0, (7a)

‖∇Φ‖ → 0. (7b)

The remaining boundary conditions to be satisfied at Y =0 depend on the nature of
the surface and result from the momentum balance. The two extreme cases correspond
to a stress-free surface and a no-slip wall, respectively. The first of these descriptions
applies at an interface where the fluid under consideration is in contact with another
fluid of vanishingly small density and viscosity, the interfacial tension of the pair
of fluids being large. Then, provided the intensity of the turbulence is moderate,
the surface remains approximately flat because for each eddy size either the Froude
number or the Weber number is low. In the absence of any surface tension gradient,
the momentum balance then leads to the vanishing of the interfacial shear stress,
which itself reduces (by virtue of the kinematic condition (1)) to the vanishing of the
normal gradient of the tangential velocity, i.e. ∂(n × v′)/∂Y = 0 at Y = 0. Combining
this condition with (1), one finds that only the normal component ω′ · n of the vorticity
fluctuation can exist at the surface, the direct consequence of this being that vortex
lines are normal to the surface. Moreover the solenoidality condition ∇ · ω′ = 0 implies
that the normal gradient of ω′ · n must also vanish at the surface. Hence the boundary
conditions to the satisfied at Y = 0 by ωA are

ωA × n = −ω∞ × n, (8a)

∂

∂Y (n · ωA) = − ∂

∂Y (n · ω∞). (8b)

In the case of a solid wall or an interface strongly contaminated by surfactants,
the velocity fluctuation must satisfy a no-slip condition at Y = 0, i.e. n × v′ = 0.
Therefrom, it turns out that the normal component of ω′ must vanish at Y = 0, a
condition implying that vortex lines are parallel to the surface. Moreover, inserting
(1) into the definition of the tangential component of ω′ shows that at Y = 0 the
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value of this component is directly related to the normal gradient of the tangential
velocity. The complete boundary condition to be satisfied by ωA can then be written
in the compact form

ωA = −ω∞ +
∂

∂Y (n × (v∞ + ∇Φ + vA)). (9)

Whatever the boundary condition at the surface, the vortical and potential velocity
disturbances can be defined unambiguously by splitting the kinematic condition (1)
into two boundary conditions to be satisfied separately, namely

n · vA = 0, (10)

n · ∇Φ = −n · v∞. (11)

The irrotational velocity disturbance ∇Φ can then be determined at any time by
solving (5) subject to boundary conditions (7b) and (11). Similarly, starting from
the initial condition ωA = 0, the vorticity disturbance can be determined through a
time-marching procedure by solving (6) subject to boundary conditions (7a), (8a, b)
or (9). At each time t , one also needs to determine the vortical velocity disturbance
vA(X, t) = ∇ × A(X, t) involved in (6) and, if necessary, in the boundary condition
(9). This is achieved by solving (4) for the vector potential A, subject to appropriate
boundary conditions. Clearly, one must have

A → 0 for Y → ∞. (12a)

After some algebra, it may be shown that imposing the surface conditions

n × A = 0, ∂(n · A)/∂Y = 0 (12b)

together with conditions (7a), (8a, b) for ωA guarantees that (10) and the stress-free
condition are satisfied at Y = 0. Similarly, setting the surface condition

A = 0 (12c)

at Y = 0 together with (7a) and (9) guarantees that (10) and the no-slip condition are
satisfied.

2.2. The RDT approach of the problem

The foregoing set of equations specifies completely the mathematical problem to be
solved in order to find at any time the velocity disturbance induced by the presence
of the surface. Owing to the boundary condition (11), the scalar potential Φ may
be determined independently from the vortical disturbance. This is exactly what is
achieved in the HG theory, in the sense specified below. In contrast, the vortical
disturbance vA is not considered at all in this theory because HG focused on the
solution at short time following insertion of a flat surface (i.e. the situation depicted in
figure 1b), and ‖vA‖ → 0 for t → 0. Hence, in contrast to the usual RDT approaches
in which the distortion of the flow consists of an imposed shear or strain whose
main effect is to modify the initial large-scale vorticity field, the ‘rapid distortion’
considered in the HG theory does not affect the vorticity field at all. The distortion of
the vorticity field due to the large-scale strain induced by the irrotational disturbance
∇Φ occurs on larger (advective) time scales and is precisely the contribution we wish
to evaluate in order to determine to what extent the ‘rapid’ solution of HG is altered
at large time.

Two points should now be mentioned. First, if we were able to solve the above set
of equations for an arbitrary undisturbed flow field v∞(X, t), it would be possible to
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compute individual realizations of the flow field as is done in the DNS approach.
As usual, the RDT theory simplifies the complete problem by using a linearized
form of the momentum (or vorticity) equation, and by only taking into account
statistical information on the spatial structure of the flow field v∞ through the energy
spectrum. In particular, two-time correlations of the undisturbed turbulence are not
specified. Hence, results of the HG theory and the present results must necessarily
be interpreted in a statistical sense (to obtain one-time statistics) and cannot be
used to predict individual realizations of the flow, even though the mathematical
developments are performed on a single realization of v∞ (see the beginning of
Appendix A). Second, as mentioned above, the purpose of the original HG theory
was to study the short-time evolution of the turbulent field following the insertion
of the surface (corresponding to Figure 1b). Hence only the specification of the
spectral characteristics of the initial flow field v0(X) = v∞(X, t =0) was required in
this approach. Here, as we are concerned with the long-time behaviour of the flow
(figure 1c), we need an extended interpretation of RDT (Carlotti 2001). This is why
we required v∞(X, t) to be a solution of the Navier–Stokes equations at any time
in the absence of the surface. Such an ‘extended’ or ‘time-marching’ RDT concept
encompasses the classical ‘short-time’ RDT and has already been used by several
authors in conjunction with the Eulerian kinematic simulation technique, in particular
to obtain two-point correlations in a turbulent flow in the presence of a wall (Turfus
& Hunt 1987; Carlotti 2002). These authors computed two-point near-wall statistics,
starting from a collection of realizations of the velocity field v∞(X, t) having random
phases, the amplitudes of v∞ in Fourier space being prescribed according to a given
energy spectrum.

2.3. The spatial structure of the surface-influenced layer

Let us now come back to the governing equations derived above and to some of
their consequences. From (5) and (11) we see that no explicit length scale occurs
in the problem defining Φ . However, since the boundary condition (11) involves the
velocity field v∞ whose large scales are of the order of the integral length scale L∞
characterizing the undisturbed turbulence, the irrotational disturbance ∇Φ can only
have a significant magnitude throughout a layer whose thickness is of order L∞
(figure 1b, c). Owing to boundary conditions (8) or (9), a viscous sublayer develops
in time along the surface (figure 1b). For short times, the growth of this sublayer is
governed by the linear part of (6) (first term on the left-hand side). Thus the thickness
δV of the viscous sublayer evolves classically as δV (t) ∼ (νt)1/2 at short time, i.e.
t � L∞/u∞ where u∞ is the r.m.s. velocity characterizing the undisturbed turbulence.
At larger times, i.e. t � L∞/u∞, the growth of the viscous sublayer saturates because
of the processes associated with the nonlinear terms of (6). Hence the stationary
value of δV is of the order of that reached at t ∼ L∞/u∞, that is δV ∼ (νL∞/u∞)1/2

(figure 1c). Measurements by Brumley & Jirka (1987) and LES results of CM
indicate δV /L∞ ≈ 2Re∞

−1/2, where Re∞ is the turbulent Reynolds number defined as
Re∞ = 2u∞L∞/ν. Note that in flows where Re∞ is very large, typically in geophysical
situations with Re∞ > 104–105, the Reynolds number Reν = 2u∞δV /ν ∼ Re∞

1/2 is
large enough for eddies travelling within the viscous sublayer to become unstable,
especially if a no-slip condition applies at the surface. Then, the structure of this
sublayer becomes more complex than depicted in figure 1(c), with, in particular, the
development of a so-called ‘eddy surface layer’ with peculiar spectral characteristics
(Hunt & Carlotti 2001). Here we are mainly interested in the dynamics of the turbulent
flow in the nearly inviscid region of the surface-influenced layer, i.e. within the
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so-called source layer defined approximately as δV � Y � L∞ (see figure 1b, c).
Hence, there is no upper bound in terms of the magnitude of Re∞ on the validity
of the results derived below; nevertheless, a complete description of the shear-free
boundary layer would of course require a complementary study focused on the
long-time dynamics of the viscous sublayer.

3. The validity of the Hunt–Graham theory at large time
3.1. Consequences of the enstrophy balance

According to (4) we have 〈ω′2〉 = 〈ω2
∞〉 + 2〈ω∞ · ωA〉 + 〈ω2

A〉, where the angle brackets
denote spatial averaging in directions x and z. It is thus appropriate to define the
dimensionless parameter ζ characterizing the relative magnitude of the enstrophy
disturbance as

ζ =
∣∣2〈ω∞ · ωA〉 +

〈
ω2

A

〉∣∣/〈ω2
∞
〉
. (13)

Within the viscous sublayer the dynamics of the flow in the presence of the surface
are necessarily different from those of the undisturbed flow because ζ is of order
unity at the surface (see conditions (8)–(9)). The short-time dynamics of this viscous
sublayer were recently studied by Teixera & Belcher (2000) within the framework
of RDT. In the presence of a rigid wall, inviscid RDT analyses of this sublayer
in situations where the turbulent Reynolds number is so large that eddies scraping
along the wall develop an instantaneous logarithmic layer have recently been carried
out by Hunt & Carlotti (2001) and Carlotti (2002). Outside this sublayer, effects
of boundary conditions (8) or (9) are negligible and the generation of the vorticity
disturbance ωA is essentially due to the terms on the right-hand side of (6). These
terms, which represent the transport, stretching and tilting of ω∞ by the irrotational
disturbance ∇Φ and its gradients, were neglected in the HG analysis which can thus
be considered as a zeroth-order solution with respect to ζ . Within the source layer
for which this theory was constructed, ζ is small compared to unity for small times,
i.e. tu∞/L∞ = o(1), because the characteristic time of the nonlinear processes is of
order L∞/u∞. Consequently, to make some progress on the controversies discussed in
the introduction, we need to clarify the conditions under which ζ can remain small
compared to unity at large time within the source layer. The simplest way by which
we can obtain some information about ζ is to determine the order of magnitude of
the various terms involved in the enstrophy budget. In the present flow this budget is
written, in index notation (Tennekes & Lumley 1972, p. 87),(

∂

∂t
− ν

∂2

∂Y2

)〈
ω′

iω
′
i

2

〉
= − ∂

∂Y

〈
v′ ω

′
iω

′
i

2

〉
+

〈
ω′

iω
′
j

∂v′
i

∂xj

〉
− ν

〈
∂ω′

i

∂xj

∂ω′
i

∂xj

〉
, (14a)

where ωi
′ is the ith component of ω′, v′ is the component of v′ in the direction

normal to the surface and the Einstein convention on repeated indices is used.
Terms on the left-hand side of (14a) represent the time-rate-of-change and viscous

diffusion of enstrophy, whereas those on the right-hand side represent transport in
the direction normal to the surface, production by vortex stretching and dissipation,
respectively. Let us now assume that the undisturbed flow is homogeneous in the
Y-direction. This is the situation for which the HG theory was elaborated, so that the
estimates given below are only rigorously obtained for this case. Then the enstrophy
balance governing the evolution of ω∞ reduces to

∂

∂t

〈
ω′

i∞ω′
i∞

2

〉
=

〈
ω′

i∞ω′
j∞

∂v′
i∞

∂xj

〉
− ν

〈
∂ω′

i∞
∂xj

∂ω′
i∞

∂xj

〉
. (14b)
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From the definition of the Taylor microscale λ, it is obvious that the stretching term
in (14b) is of order u∞

3/λ3. The detailed order-of-magnitude analysis of Tennekes &
Lumley (1972, pp. 90–92) shows that the time-rate-of-change term is smaller than
u∞

3/λ3 by a factor of order Re∞
−1/2. Therefrom, the least-degeneracy principle leads

to the well-known conclusion that the dissipation term is necessarily of order u∞
3/λ3.

To make apparent the source terms responsible for the enstrophy disturbance near
the surface, we can rewrite the transport term in (14a) in the form (∂/∂Y)〈(v∞ +
∂Φ/∂Y)ω∞iω∞i/2〉 + 〈F〉 where 〈F〉 groups contributions involving ωA, vA or both
(near the edge of the viscous sublayer, 〈F〉 contains in particular the residual flux of
the enstrophy disturbance (ωA . ωA)/2 due to boundary conditions (8) or (9)). Similarly
we rewrite the stretching term in the form 〈ω∞iω∞j (∂/∂xj )(v∞i + ∂Φ/∂xi)〉 + 〈G〉. To
evaluate the magnitude of ζ we first need an estimate of the foregoing source
terms. According to the definition of ζ , 〈ω′2

i 〉 =O((1 ± ζ )u∞
2/λ2). Then we introduce

the estimates appropriate within the source layer, i.e. ∂/∂Y = O(1/Y) and |v∞ +
∂Φ/∂Y| = O(u∞(Y/L∞)1/3) (see Appendix A). We also take into account the fact that
the correlation between velocity and vorticity fluctuations must be weighted by a ratio
λ/L∞ because the characteristic wavenumber of velocity (resp. vorticity) fluctuations
is L−1

∞ (resp. λ−1), resulting in a weak spectral overlap (Tennekes & Lumley 1972,
p. 81). From these estimates we conclude that∣∣∣∣ ∂

∂Y

〈(
v∞ +

∂Φ

∂Y

)
ω∞iω∞i

2

〉∣∣∣∣ ∼
(

u∞

λ

)3(
λ

L∞

)2(
L∞

Y

)2/3

∼ Re−1
∞

(
u∞

λ

)3(
L∞

Y

)2/3

,

(15a)

where the last equality is obtained by using the well-known estimate
λ/L∞ = O(Re∞

−1/2) (note that this estimate still holds within the source layer, as shown
at the end of Appendix A). To estimate the term 〈ω∞iω∞j (∂/∂xj )(v∞i + ∂Φ/∂xi)〉 in
(14a) we need to know the order of magnitude of velocity gradients within the source
layer. Their variance is calculated in Appendix A using the HG expression for the
velocity potential Φ; (A 7) allows us to conclude that the r.m.s. value of these velocity
gradients is of order u∞/λ(1 ± (kKY)−4/3)1/2) instead of being of order u∞/λ in the free
stream, kK being the Kolmogorov wavenumber associated with small-scale dissipative
eddies (a precise definition of kK is given in Appendix A, above (A 5)). In the limit
Re∞ → ∞, kKY is large within the source layer because kKL∞ =O(Re∞

3/4) (Monin
& Yaglom 1975, p. 349). Consequently the correction induced by the irrotational
disturbance is small. This was to be expected because, at a given Y, only ‘large’
eddies with a tangential wavenumber smaller than 1/Y are affected by the surface
(see (A 2)), whereas the main contribution to the velocity gradients comes from small-
scale eddies. Using the estimate kKL∞ = O(Re∞

3/4), the magnitude of the correction
experienced by the velocity gradients within the source layer is found to be of order
u∞/λRe∞

−1(L∞/Y)4/3). Therefore, given the relative distance Y/L∞ from the surface,
the larger the turbulent Reynolds number the smaller the correction because of the
increasing gap between large- and small-scale eddies. From the foregoing result we
conclude that an upper bound for the source term 〈ω′

∞iω
′
∞j (∂/∂xj )(v

′
∞i + ∂Φ/∂xi)〉 is∣∣∣∣

〈
ω∞iω∞j

∂

∂xj

(
v∞i +

∂Φ

∂xi

)〉∣∣∣∣ = O

((
u∞

λ

)3
(

1 ± Re∞
−1

(
L∞

Y

)4/3
))

. (15b)

Comparing (15a) with (15b) reveals that the surface-induced correction to the
stretching term is larger than the transport term by a factor (L∞/Y)2/3. Consequently,
this correction is the main source for the enstrophy disturbance within the source
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layer. To estimate the dissipation term we use the fact that the characteristic length
scale of vorticity gradients is the Kolmogorov microscale ηK (Tennekes & Lumley
1972, p. 92). This yields

ν

∣∣∣∣
〈

∂ω′
i

∂xj

∂ω′
i

∂xj

〉∣∣∣∣ ∼
(

(1 ± ζ )
ν

η2
K

(
u∞

λ

)2
)

∼
(

(1 ± ζ )Re∞
−1 λL∞

η2
K

(
u∞

λ

)3
)

∼
(

(1 ± ζ )

(
u∞

λ

)3
)

, (15c)

where the last equality is obtained by making use of the relations λ/L∞ = O(Re∞
−1/2)

and ηK/L∞ = O(Re∞
−3/4). Finally we note that the time-rate-of-change term in (14a)

is
∂

∂t

〈
ω′

iω
′
i

2

〉
∼
(

(1 ± ζ )Re∞
−1/2
(u∞

λ

)3
)

, (15d)

whereas the viscous contribution is smaller than the latter term by a factor Re∞
−1.

When a statistical equilibrium is reached, the source terms in (14a) are balanced either
by the nonlinear terms 〈F〉 and 〈G〉 or by dissipation. It is difficult to determine
precisely the order of magnitude of 〈F〉 and 〈G〉 because these terms involve products
of quantities whose degree of correlation is a priori unknown (particularly because
we do not know to what extent the spatial scales of the vorticity disturbance ωA

overlap those of the undisturbed velocity field v∞). However, since all contributions
in 〈F〉 and 〈G〉 involve either ωA or the associated vortical velocity disturbance vA or
both, we necessarily have 〈F〉 = 〈F〉 =0 for ζ =0. More precisely, 〈G〉 involves for
instance terms like ωAiω∞j ∂v∞i/∂xj or ωAiωAj∂v∞i/∂xj . Using the Schwarz inequality
and (13), it turns out that the order of magnitude of these terms cannot exceed
ζu∞

3/λ3, which leads us to conclude that the Taylor expansion of 〈F〉 and 〈G〉 with
respect to ζ begins with a term linearly proportional to ζ . We can now insert the
above estimate of 〈F〉 and 〈G〉 and the results (15a–d) into (14a). Moreover, we know
that terms associated with the undisturbed flow field (i.e. terms independent of ζ and
Y in (15b–d)) balance exactly because they satisfy the undisturbed enstrophy balance
(14b). Thus, it turns out that the term proportional to Re∞

−1(L∞/Y)4/3 in (15b) must
be balanced by a term of order ζu∞

3/λ3, due either to viscous dissipation or to the
nonlinear contributions 〈F〉 and 〈G〉. This yields

ζ = O

(
Re∞

−1

(
L∞

Y

)4/3
)

. (16)

Equation (16) is the central result of the present analysis. It shows that within the
source layer, the straining associated with the distortion of large eddies by the surface
is much weaker than u∞/λ and produces an enstrophy disturbance whose relative
order of magnitude at long time ranges from ζ = O(Re∞

−1) for Y/L∞ = O(1) to
ζ = O(Re∞

−1/3) for Y ≈ δV , i.e. Y/L∞ = O(Re∞
−1/2) (see figure 1c). It must be kept in

mind that this estimate provides only an upper bound of the enstrophy disturbance.
Nevertheless the crucial point is that ζ remains small throughout the source layer.
Consequently our main result is that, provided the turbulent Reynolds number is
large enough, the distortion of the undisturbed vorticity field by the irrotational
disturbance ∇Φ is only a secondary effect at all times in this flow, which allows us
to conclude that the HG description of the source layer is valid even at large time.
Obviously, estimates (15a, b) are specific to the source layer (see the assumptions used
in Appendix A), so that the result (16) does not hold within the viscous sublayer.
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Figure 2. The enstrophy profile near the shear-free surface in the time-evolving DNS of
Walker et al. (1996). Re∞ ≈ 65; enstrophy is normalized by (ε∞/K∞)2 (ε∞ and K∞ are
the free-stream dissipation rate and kinetic energy, respectively). The vertical line indicates
approximately the edge of the viscous sublayer.

Note however that our estimate of 〈F〉 and 〈G〉 (which were found to be of order
ζu∞

3/λ3) is consistent with the fact that at the top of the viscous sublayer (where ζ

is of order unity because of boundary conditions (8)–(9)), these terms are of order
u∞

3/λ3, i.e. of the same order of magnitude as the dominant terms of (14b).
The prediction (16) can be checked by comparison with the numerical results of

WLGR who examined the evolution of the enstrophy throughout the flow (figure 2,
reprinted from figure 6b of the original paper). In this simulation, Re∞ is about 65 so
that (16) yields ζ ≈ 0.1 at the position Y/L∞ = 2.0 Re∞

−1/2 corresponding to the outer
edge of the viscous sublayer. At this location (z/L ≈ 0.2 in WLGR’s notation), the
results exhibit a broad maximum of the enstrophy that is larger than the free-stream
value by about 9%, in good agreement with our estimate. Interesting information
can also be obtained by considering (14a) separately for each component of 〈ω′2

i 〉 (no
summation on i). More precisely, we may repeat the analysis leading to (15b) for each
component of 〈ω′2

i 〉, using results from (A 7). This equation shows that 〈(∂u′/∂Y)2〉
and 〈(∂w′/∂Y)2〉 increase in the source layer as Y/L∞ → 0 whereas 〈(∂v′/∂x)2〉 and
〈(∂v′/∂z)2〉 decrease, a tendency qualitatively confirmed by the results of Shen et al.
(1999) (according to (A 7), the other five components of the r.m.s. velocity gradient
are left unaffected by the surface). Using these results in the evaluation of the vortex
stretching term involved in the balance equation of 〈ω′

x
2〉 and 〈ω′

z
2〉 (resp. 〈ω′

Y
2〉), we

find that this term increases (resp. decreases) within the source layer as Y/L∞ → 0.
Hence we can conclude that the magnitude of the tangential components ω′

x and ω′
z

increases as the surface is approached, while that of the normal component decreases;
this conclusion is also supported by the results of WLGR.

3.2. Discussion

At this point several comments are in order. First, it is clear from (16) that the
lower the Reynolds number, the larger the departure of the actual velocity field from
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the HG predictions. The largest differences are found near the outer edge of the
viscous sublayer and these differences are larger by a factor of order Re∞

1/6 than
the viscous corrections, which are of order Re∞

−1/2. For sufficiently small values of
Re∞, other low-Reynolds-number effects associated with the boundary conditions (8)
or (9) affect the surface-influenced layer because δV is a substantial percentage of
L∞. These effects are more noticeable in the case of a solid wall than in that of a
shear-free surface because the tangential velocity fluctuations must then return to zero
(Teixeira & Belcher 2000). For instance the HG theory predicts that the turbulent
kinetic energy increases towards the surface for Y/L∞ � 0.27. This effect will certainly
not be observed if δV /L∞ is larger than 0.15–0.20. As was pointed out by HG, there
is little doubt that this is why the low-Reynolds-number experiments of Uzkan &
Reynolds (1967) did not exhibit a maximum of the tangential fluctuations close to
the wall; the results of Aronson et al. (1997) are also probably affected by this effect,
even though the corresponding value of Re∞ is about four times larger than in the
former experiment. These remarks suggest that DNS predictions obtained with low
values of Re∞ must be interpreted with care. Clearly there is no reason to expect that
such DNS results will agree with the HG theory in the region of maximum influence
of the surface, i.e. for small values of Y/L∞. Moreover, since high-Reynolds-number
experimental and LES results agree with HG predictions, we believe that some of the
conclusions that have been drawn from low-Reynolds-number DNS for modelling
the influence of a flat surface on terms like dissipation and pressure–strain correlation
(Perot & Moin 1995b) should be restricted to low Reynolds numbers.

Second, we observe that our estimate of nonlinear effects differs markedly
from the correction proposed by Hunt (1984), according to which the tangential
velocity variances increase near the surface by (	u)2 = O(u∞

2(L∞/Y)1/2) owing
to the extra vorticity generated by large-scale strain. We find a much smaller
amplification, since, for Y/L∞ = O(Re∞

−1/2), (16) predicts (	u)2 = O(u∞
2Re∞

−1/3)
instead of (	u)2 = O(u∞

2Re∞
1/4) based on Hunt’s estimate. Hunt derived his correction

on the basis of an analogy with results obtained by Durbin (1981) in a study of
turbulence amplification near the front stagnation point of a sphere. This analogy is
revisited in Appendix C where we show that an important mathematical constraint
required for the applicability of Durbin’s results is not satisfied in the surface-
influenced layer. As far as we are aware, the only observations to date that support
Hunt’s nonlinear correction are those of Hannoun et al. (1988) and Kit et al.
(1997) obtained in a stirred-grid tank in the presence of a sharp density interface.
However, these authors noticed the existence of interfacial waves in the flow, and
the corresponding velocity spectra suggest that a significant part of the increase
of the horizontal fluctuations near the interface is due to these waves which feed
the low-wavenumber components, whereas on the grounds of Hunt’s correction one
would expect an enhancement of significantly smaller eddies. Moreover, Hannoun
et al. and Kit et al. normalized the results they obtained at a distance Y from the
interface using the r.m.s. velocity fluctuation uH (Y) measured at the same location
in a homogeneous fluid. In contrast, the results of Brumley & Jirka (1987) (basically
obtained in the same type of device and in the same range of Re∞) and those of Calmet
& Magnaudet (2003) were normalized using the ‘free-stream’ intensity u corresponding
to Y = L∞ and did not exhibit any over-amplification of the horizontal fluctuations
compared to the original HG theory. According to Kit et al., uH

2(Y = 0)/u2 is about
0.75 in these experiments, so that most of the over-amplification noticed by the
aforementioned authors disappears if their results are renormalized using u instead
of uH .
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From the above remarks it seems that the agreement between the results of
Hannoun et al. and Kit et al. and Hunt’s correction is most likely fortuitous, and the
conclusions of the analysis carried out in Appendix C suggest that this correction
itself is questionable. Nevertheless there is no doubt that the stretching of small-scale
turbulence by large-scale eddies always tends to amplify tangential fluctuations near
the surface. As our analysis is global because it does not take into account the
distribution of length scales of small eddies, it is probable that a certain subrange of
eddies undergoes an amplification larger than predicted by (16) and thus closer to
RDT predictions. However, the crucial difference between inviscid RDT predictions
and our analysis is that we take into account the moderating effect of viscous
dissipation. Hence, even though (16) probably underpredicts the amplification of
certain small-scale eddies, what our analysis shows is that when the entire spectrum
is considered, dissipation limits the effects of the nonlinear amplification mechanism
to the level specified by (16).

3.3. Governing equations and pressure fluctuation within the source layer

Using the conclusions of § 3.1 we now consider the flow field in the source layer in
the limit Re∞ → ∞. Having shown that the vorticity disturbance ωA and hence the
vortical velocity correction vA are negligibly small whatever t in this limit, we shall
neglect from now on terms of order ζ . Hence the leading-order velocity field in the
source layer is merely

v′(X, t) ≈ v∞(X, t) + ∇Φ(X, t). (17)

The Navier–Stokes equations corresponding to the velocity field (17) are

∂

∂t
(v∞ + ∇Φ) +

1

2
∇(v∞ + ∇Φ)2 + ω∞ × (v∞ + ∇Φ) = − 1

ρ
∇(p∞ + P′) + ν∇2v∞, (18)

where ρ denotes the fluid density, p′ =p∞ +P′ is the total pressure fluctuation and use
has been made of the fact that viscous stresses induced by the irrotational disturbance
∇Φ do not produce any momentum flux, since ∇2(∇Φ) = −∇ × (∇ × (∇Φ)) = 0. As
we can see in (6), negligible values of ωA in the source layer correspond to negligible
values of the term ∇Φ · ∇ω∞ −ω∞ · ∇(∇Φ) = ∇× [ω∞ ×∇Φ]. Consequently, the leading
part of ω∞ × ∇Φ is associated with a scalar potential Ψ , so that we may write
ω∞ × ∇Φ = ∇Ψ + O(ζu∞

2/λ). Then, subtracting the momentum equation governing
the unperturbed field v∞ from (18), in which we neglect the above contribution of
order ζu∞

2/λ, yields a relation giving the leading-order pressure gradient ∇P′ induced
by the presence of the surface. This relation may be integrated once, allowing us to
write a Bernoulli-like integral giving P′ in the form

P′(X, t) = −ρ

{
∂Φ

∂t
+

1

2
(∇Φ)2 +v∞ · ∇Φ+Ψ

}
(X, t)+ρ

〈
1

2
(∇Φ)2 +v∞ · ∇Φ+Ψ

〉
(Y, t).

(19)

The term within angle brackets on the right-hand side accounts for the variation of
the mean pressure in the direction normal to the surface ((19) does not involve any
additive constant because P′ must vanish for Y → ∞).

Equations (17), (19), (5), (7b) and (11) supplemented by the Navier–Stokes equations
governing the undisturbed field (v∞, p∞) determine completely the leading-order
solution describing the inviscid influence of the surface on the pre-existing turbulence.
Equations (18–19) emphasize the fact that, up to terms of order ζ , the velocity field
(17) is a solution of the full Navier–Stokes equations, i.e. momentum equations with a
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nonlinear term and a viscous term. This is not widely recognized since several authors
tend to oppose the ‘kinematic’ nature of the HG solution to the ‘dynamic’ nature
of Navier–Stokes solutions. What is kinematic in the HG solution is the boundary
condition (1) being taken into account, and a crucial consequence of this boundary
condition is that no vorticity is added to the flow at leading order. As shown by
(18)–(19), this by no means implies that this leading-order solution is equivalent to
neglecting all nonlinearities and viscous effects in the governing equations. Bearing
this crucial point in mind, transport equations for the Reynolds stress tensor 〈v′

iv
′
j 〉

corresponding to the velocity field (17) can be formed by multiplying the ith and j th
components of (18) by the appropriate component of (17) and averaging in directions
of homogeneity. In the resulting equations, we maintain the simplifying assumptions
selected for the analysis presented in § 3.1 and consider that viscous contributions are
negligible within the source layer. This allows us to write the equations governing the
diagonal components 〈v′

iv
′
i〉 (no summation on i) in the form

∂〈v′
iv

′
i〉

∂t
= −εii +

2

ρ
〈p′ s′

ii〉 − ∂

∂Y

[
〈v′

iv
′
iv

′〉 +
2

ρ
〈p′ v′〉δi2

]
, (20)

where s ′
ii = ∂v′

i/∂xi (resp. εii = ν〈(∂v′
i/∂xj )

2〉 with summation on j ) is the diagonal
component of the strain-rate (resp. pseudo-dissipation) tensor in the ith direction and
δij is the Kronecker tensor.

4. Intercomponent energy transfer
4.1. The instantaneous effect of boundary insertion

To discuss the implications of (20) we have to consider separately the singular situation
corresponding to t = 0 (illustrated in figure 1a) and the evolution at subsequent times.
At t = 0, the surface is suddenly inserted in the flow and this forces ∂〈v′2〉/∂t to
take an infinite negative value. Owing to the term −ρ∂Φ/∂t in (19), the pressure
fluctuation also takes infinite values and ∂〈v′2〉/∂t is merely balanced by the two
terms of (20) (with i = 2) involving the pressure fluctuation. These two terms are
evaluated in Appendix B where we show that they are both negative. Consequently,
as one expects intuitively, the blocking effect of the surface produces an initial
energy transfer from the normal energy component to the tangential ones, i.e. the
pressure–strain correlation φ22 = (2/ρ)〈p′s ′

22〉 is negative. However, the fact that the
pressure–diffusion flux −∂〈(p′/ρ)v′〉/∂Y is non-zero also implies that there is a net
variation of the averaged turbulent kinetic energy per unit mass K = 〈K〉, where

K = 1
2

∑3
i = 1 v′

i
2 is the instantaneous turbulent energy. In this case, the budget of K

reduces approximately to

∂K

∂t

∣∣∣∣
t=0

≈ − 1

ρ

∂

∂Y〈p′v′〉. (21)

Using the fact that K = 3
2
u∞

2 everywhere for t < 0 if the undisturbed turbulence is
homogeneous and isotropic, integration of (21) yields

K(Y, t = 0+) =
3

2
u∞

2 − 1

ρ

∫ t=0+

t=0−

∂

∂Y〈p′v′〉(Y, t) dt. (22)

According to (B 5), the right-hand side of (22) vanishes for Y = 0, indicating that there
is no change of K at the surface. Since the time integral of the pressure–diffusion
flux also vanishes in the limit Y/L∞ → ∞ and is negative for finite values of Y/L∞,
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a minimum of K occurs within the source region. The net loss of K in the flow
domain is due to the fact that the time integral of 〈p′v′〉(0, t) between t = 0− and
t = 0+ is positive. This explains why a minimum of K was found at Y/L∞ ≈ 0.27
by HG. To conclude, this analysis confirms that the sudden insertion of the surface
produces an intercomponent energy transfer by which the anisotropy of the initial
turbulence becomes non-zero; however, this is not a purely redistributive process
because the pressure–diffusion flux produces a net decrease of the turbulent energy in
the surface-influenced region. Note that this analysis describes the ideal case where the
surface is instantaneously inserted at the top of the whole flow domain. In practice,
especially in wind-tunnel experiments like those reviewed in the introduction, the
surface has a finite length, so that there is a leading-edge effect which by virtue of
the Taylor hypothesis may be interpreted as a non-instantaneous effect of boundary
insertion. This effect modifies the velocity potential Φ near the leading edge in the
way described by HG.

4.2. Freely evolving turbulence

We now turn to the following stages corresponding to t > 0 and consider first the
situation where turbulence decays freely in time. There is no longer a singularity in
the solution and we examine (20) in the limit Y/L∞ → 0, kKY → ∞ corresponding
to the part of the source layer closest to the surface. In this limit, the behaviour of
the three r.m.s. velocities is known from (A 9) and (A 13) and the components of the
pseudo-dissipation tensor εij can be deduced from (A 7). This equation also shows

that the surface-induced corrections to εii are of order ε∞Re∞
−1(L∞/Y)4/3, where ε∞

is the dissipation rate in the free stream; consequently these corrections provide a
contribution of order ε∞Re∞

−1/3 to (20) for Y/L∞ = O(Re∞
−1/2). To evaluate the

time derivative of 〈v′
iv

′
i〉 for i = 2 we start with (A 13) and note that the time

derivative of terms proportional to ε∞
2/3Y2/3 in (A 13) is of order ε∞(Y/L∞)2/3, thus

also providing a contribution of order ε∞Re∞
−1/3 to (20) for Y/L∞ = O(Re∞

−1/2). The
time derivative of the leading-order term 3

2
u∞

2 in (A 13) is obtained by using the
kinetic energy balance of the free-stream turbulence, namely

3

2

du∞
2

dt
= −ε∞. (23)

Collecting all this information allows us to approximate the Reynolds stress budget
(20) for Y/L∞ = O(Re∞

−1/2) as

2

〈
p′

ρ
s ′
ii

〉
− ∂

∂Y〈v′
iv

′
iv

′〉 ≈ − 1
3
ε∞ + O

(
ε∞Re∞

−1/3
)

for i = 2, (24)

2

〈
p′

ρ
s ′
22

〉
− ∂

∂Y

[
〈v′3〉 + 2

〈
p′

ρ
v′
〉]

≈ 2
3
ε∞ + O

(
ε∞Re∞

−1/3
)

for i =2. (25)

Since the pressure–strain tensor is traceless, adding (24) and (25) reveals that the
transport term in the turbulent kinetic energy balance is of order ε∞Re∞

−1/3. Assuming
that none of the turbulent fluxes 〈v′

iv
′
iv

′〉 can exceed this order of magnitude (a
statement confirmed by the plots of WLGR), (25) implies that the pressure–strain
correlation φ22 is positive for large enough values of Re∞. More generally, the above
estimates show that φ22 is positive throughout the source layer, increasing from
negligible values for Y/L∞ = O(1) to 2

3
ε∞ near the edge of the viscous sublayer. Thus

energy is now transferred from the (largest) tangential energy components towards the
(smallest) normal one, indicating that the intercomponent transfer is dominated by
the isotropization mechanism generally observed far from boundaries. This happens
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Figure 3. The pressure–strain correlation φ22 in the time-evolving DNS of Perot & Moin
(1995a). Re∞ ≈ 24. The vertical line indicates approximately the edge of the viscous sublayer.

because of two complementary features of the velocity variances resulting in a
traceless process. First, there is a positive imbalance between the time-rate-of-change
of 〈v′2〉 (that vanishes at the surface) and the corresponding dissipation component
ε22. Second, the time-rate-of-change of the tangential components 〈v′2

i 〉 exceeds εii

because 〈v′2
i 〉(Y = 0, t) = 3u∞(t)2/2, resulting in a negative imbalance. Note that there

is no contradiction between the fact that the tangential r.m.s. velocities are larger
than u∞ near the surface at any time (because of the initial condition provided by the
sudden insertion of the surface), and the existence of an energy transfer from these
tangential components towards the normal component for t > 0. Note also that this
prediction does not depend on the nature of the surface since boundary conditions (8)
or (9) have not been invoked in the derivation. Confirmation that φ22 takes positive
values in the source layer can be found in figure 14 of PM and in figure 10 of WLGR,
even though low-Reynolds-number effects reduce its magnitude significantly in these
DNS results.

It must also be stressed that the foregoing results do not conflict with the findings
of PM. In their simulations, the relative thickness δV /L∞ of the viscous sublayer lay
between 0.25 and 0.4 approximately, depending on the Reynolds number of the simu-
lation, and most of their discussion focused on this thick sublayer where the
largest values of the pressure–strain correlation occur. There, the velocity distur-
bance produced by the surface is much larger in the case of a solid wall or a
permeable membrane than in that of a free surface, and this led PM consistently to
conclude that the strength of the pressure–strain correlation is governed by viscous
processes rather than by the blocking effect. What is surprising is that PM did not
comment on their results concerning the outer part of the surface-influenced region,
whereas these results provide evidence of the major role played by the blocking effect
outside the viscous sublayer. For instance their figure 14 (reprinted here as figure 3)
compares the evolution of φ22 for a shear-free surface and a permeable membrane.
While these results show that φ22 is clearly positive outside the viscous sublayer in the
former case, they reveal near-zero values of φ22 in the latter one, a trend consistent
with the absence of blocking in the presence of a permeable membrane.
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4.3. Spatially decaying turbulence

The second canonical situation of major interest for understanding how the presence
of the surface affects the intercomponent energy transfer is when the undisturbed
turbulence is statistically stationary and decays spatially along the direction normal
to the surface, while being locally isotropic. The undisturbed flow is then governed
by a balance between dissipation and turbulent transport in the Y-direction, namely

0 = −ε∞(Y) − d

dY

[
〈Kv′〉∞(Y) +

1

ρ
〈p′v′〉∞(Y)

]
, (26)

where the subscript ∞ refers now to undisturbed quantities varying with Y rather than
to ‘free-stream’ quantities. The prototype of such turbulence (sometimes referred to
as ‘purely diffusive’ turbulence) is that produced by oscillating vertically a grid at the
bottom of a tank partially filled with water (see e.g. Brumley & Jirka 1987; Hannoun
et al. 1988; Kit et al. 1997). Other inhomogeneous steady flows in which production by
the mean shear only plays a secondary role can also probably be described with similar
arguments, especially the surface region of high-Reynolds-number open-channel flow.
The distortion produced by a flat surface to incoming turbulence governed by (26)
is much more complex to analyse than the freely evolving case for two reasons.
First, the inhomogeneity induced by the surface is superimposed on a pre-existing
inhomogeneity, the presence of which greatly complicates the theoretical treatment
in spectral space. This is why the mathematical extension of the HG theory to
inhomogeneous turbulence is still to be done. Nevertheless, the inhomogeneity of the
undisturbed flow is generally weak in the sense that relative variations of characteristic
quantities like the r.m.s. velocity u∞ or the dissipation ε∞ over one integral length scale
are fairly small (typically 10% in stirred-grid experiments according to the results
of Brumley & Jirka (1987)), suggesting that the main predictions of the HG theory
certainly remain applicable. Second, the intercomponent energy transfer in the source
layer is now governed by the near-surface behaviour of turbulent transport terms.
For instance, the Reynolds stress budget in each tangential direction may be written
in the form

φii(Y) = εii(Y) +
d

dY〈v′
iv

′
iv

′〉(Y) for i = 2, (27)

where φii =2〈(p′/ρ)s ′
ii〉. Hence, assuming that at leading order dissipation in the

source layer remains unaffected by the surface as it is in the freely evolving case,
we see that the tangential components of the pressure–strain tensor are positive or
negative, depending on −d〈v′2

i v′〉/dY being smaller or larger than 2
3
ε∞. Consequently,

predicting the sign of the pressure–strain terms in the surface-influenced layer requires
a realistic model of third-order moments to be introduced. This is the major difficulty
of the problem.

To overcome this difficulty we construct a crude near-surface model of third-
order moments based on simple physical arguments. Clearly the normal motions
that are most efficient for producing a net transport of the turbulent energy v′2

i

(no summation on i) are the large-scale events characterized by a strong asymmetry
(Nagano & Tagawa 1988, 1990). We can reasonably assume that the efficiency of
these motions in the turbulent transport process is proportional to the skewness factor
S(v∞) = 〈v∞

3〉/〈v∞
2〉3/2 characterizing the undisturbed velocity component normal to

the surface. In the part of the source layer such that Y/L∞ � 1, these large-
scale motions are associated with wavenumbers much smaller than 1/Y. A Taylor
expansion of the corresponding transport velocity vs(Y) (whose average is defined as
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Figure 4. The turbulent flux – 〈Kv′〉 measured in a stirred-grid experiment by Hannoun
et al. (1988): �, close to a sharp density interface (figure 10 of the original paper); �, close to
a solid plate (figure 14 of the original paper). The flux is normalized by its value – 〈Kv′〉∞ at
the same location in the non-stratified situation; the dashed lines represent the two asymptotic
regimes 〈Kv′〉/〈Kv′〉∞ ∝ Y and 〈Kv′〉/〈Kv′〉∞ = 1, respectively.

〈vs〉(Y) = 〈Kv′〉/〈K〉) can then be performed near Y = 0, indicating that at leading
order vs(Y) varies linearly with the distance to the surface. Consequently, for Y/L∞ �
1, vs(Y) evolves as vs(Y) ∼ S(v∞)u∞Y/L∞. Furthermore, assuming that the scaling laws
derived in the case of homogeneous undisturbed turbulence remain locally applicable,
we know from (A 9) and (A 13) that close to the surface v′2 ∼ ε∞

2/3Y2/3, whereas
for i = 2 v′2

i ∼ u∞
2 − µε∞

2/3Y2/3 + ηε∞
2/3L∞

−1/3Y, µ and η being positive numerical
constants. Combining these estimates yields

〈
v′2

i v′〉 ∼ S(v∞)u∞
3 Y
L∞

[
1 − µ′

(
Y
L∞

)2/3

+ η′
(

Y
L∞

)]
for i = 2, (28a)

〈
v′2

i v′〉 ∼ S(v∞)u∞
3

(
Y
L∞

)5/3

for i = 2, (28b)

where µ′ and η′ are numerical constants proportional to µ and η, respectively.
Note that if we apply the above reasoning outside the surface-influenced layer, we
obtain vs(Y) ∼ S(v∞)u∞ and v′2

i ∼ u∞
2, which yields the correct prediction 〈v′2

i v
′〉 ∼

S(v∞)u∞
3 (i =1, 2, 3). Equation (28b) suggests that the vertical component of the flux

is small near the surface since −d〈v′3〉/dY = O(ε∞Re∞
−1/3) for Y/L∞ = O(Re∞

−1/2). In
contrast, the leading-order term of (28a) yields a constant flux −d〈v′2

i v′〉/dY = O(ε∞)
for i = 2. The existence of a constant turbulent flux in the region Y/L∞ → 0 is
strongly supported by the measurements of Hannoun et al. (1988), either in the
presence of a density interface or near a rigid plate (figure 4). The above predictions
can also be compared in more detail with the profiles of the turbulent transport terms
found in the LES of CM. These profiles are plotted in figure 5. They confirm that
the vertical flux decreases sharply compared to the horizontal flux near the top of the
source layer; the Y2/3 dependence obtained by differentiating (28b) is approximately
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Figure 5. The turbulent fluxes near the surface of a high-Reynolds-number steady
open-channel flow (Re∞ ≈ 360) as found in a LES by Calmet & Magnaudet (2003). The
fluxes are normalized by ν/u∗4, where u∗ is the friction velocity at the bottom wall. ——,
Streamwise component; – – –, spanwise component; — —, vertical component.

observed for 0.15 � Y/L∞ � 0.25 (in this LES, Re∞ ≈ 360 and the viscous sublayer
corresponds to Y/L∞ � 0.1, implying a sharper decay of the vertical flux for small
values of Y/L∞). The streamwise flux is also found to remain almost constant in
accordance with the leading-order term of (28a). The spanwise component is nearly
equal to the streamwise one for Y/L∞ ≈ 0.08 and Y/L∞ > 0.27 but evolves somewhat
differently in between, where a significant reduction is observed. The last two terms on
the right-hand side of (28a) are certainly responsible for this behaviour and we believe
that the difference between the streamwise and spanwise fluxes has the same origin
as the difference observed between the two horizontal r.m.s. velocities in figure 12 of
CM.†

To close the above model, we use the LES results reported by CM. More precisely,
we consider the ‘free-stream’ values u∞ = u, with the value of u determined in § 5.1 of
CM, and S(v∞) = −0.3 which corresponds to the value of the skewness factor of the
normal velocity measured at Y/L∞ = O(1). With these values, the best fit between the
model and the LES results is obtained by introducing a numerical constant close to
0.5 (resp. 1.5) in front of the right-hand side of (28a) (resp. (28b)). If these constants
are regarded as universal, predictions for the pressure–strain correlations in the limit

† In CM the discussion of § 5.2 suggests that in open-channel flows, the effects of the mean
shear result in a larger value of η′ in the streamwise component. To account properly for this
anisotropy in (28a), it would be necessary to modify the value of η′ corresponding to turbulence
axisymmetric about the Y-axis by a correction involving the non-zero value of the skewness factor
S(u∞) associated with the streamwise velocity fluctuation.
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Y/L∞ → 0 can be obtained for purely diffusive turbulence. Assuming that the results
of Appendix A remain approximately applicable, we may write at leading order
εii(Y) ≈ (2/3)ε∞(Y) (no summation on i). Then, applying the approximate relation
ε∞ = u∞

3/(2L∞) valid for isotropic turbulence (Tennekes & Lumley 1972, p. 273), we
obtain εii(Y) ≈ u∞

3(Y)/(3L∞(Y)). Incorporating the above features of the model in
(27), we find at leading order

φii(Y/L∞ → 0) ≈ ε∞(0)
[

2
3

+ S(v∞)
]

for i = 2. (29)

Using (28a, b) in the turbulent kinetic energy balance, we also obtain an estimate of
the surface value of the pressure–diffusion flux, namely

−
(

∂

∂Y

〈
p′

ρ
v′
〉)

(Y/L∞ → 0) ≈ ε∞(0)[1 + S(v∞)]. (30)

Equations (29) and (30) show that the sign of the surface values of the pressure–
strain correlations and of the pressure–diffusion flux depends directly on the value
of the skewness factor S(v∞) assumed to govern the leading-order contribution
to the turbulent transport; nevertheless the critical value S(v∞) = −2/3 for which
the right-hand side of (29) changes sign must be regarded as indicative at this
stage. Owing to the moderate values (−0.3 to −0.4) of S(v∞) found in high-
Reynolds-number open-channel flows (Nakagawa & Nezu 1977), (29) and (30)
predict that the pressure–diffusion flux and the tangential components of φii are
both positive in this type of flow. This prediction agrees with the numerical results
displayed in figures 5(b) and 6 of CM. According to the literature, skewness factors
have not been determined in stirred-grid tank experiments. Nevertheless Hannoun
et al. (1988) reported the turbulent flux – 〈Kv′〉 replotted in figure 4, from which S(v∞)

can be estimated provided the cross-correlation coefficient 〈v′2
i v

′〉/(〈v′2
i 〉〈v′2〉1/2) (i = 2)

is known. Assuming that this coefficient lies between S(v∞)/3, as found in shearless
mixing layers (Veeravalli & Warhaft 1989), and S(v∞)/2, as observed in diffusive
turbulence produced by a confined jet (Risso & Fabre 1997), these data indicate
averaged values of |S(v∞)| in the range 0.62 ± 0.04.† According to (29), φii(Y/L∞ → 0)
(i = 2) is then close to zero; hence we guess that the surface-induced intercomponent
energy transfer is small in high-Reynolds-number stirred-grid turbulence.

According to our model, intercomponent energy transfer within the surface-
influenced layer of flows in which |S(v∞)| > 2/3 should be dominated by the
isotropization mechanism described in § 4.2. However, we are not aware of situations
of diffusive turbulence in which |S(v∞)| reaches such high values, so that we cannot
check this prediction. Nevertheless, the most important point in the present context
is that combining a crude model of the asymmetry of the large-scale normal motions
with the HG predictions for the velocity variances results in a model of third-order
moments from which negative values of φ22 are predicted for moderate values of
S(v∞). Considering this conclusion together with the results previously obtained in
the case of freely evolving turbulence shows that the HG theory does not conflict
with any of the physical mechanisms of intercomponent energy transfer near a flat
surface reported to date.

† Interestingly, combining this estimate with the slope of figure 4 and the experimental profile
of the undisturbed turbulent flux – 〈Kv′〉∞(Y) confirms the value of approximately 0.5 for the
empirical constant in front of the right hand-side of (28a).



188 J. Magnaudet

5. Summary and concluding remarks
As the capability of the HG theory to predict turbulent statistics at large time

following the sudden insertion of a flat surface has been seriously questioned in
recent years, we have re-examined this question in detail. Our plan was to determine
the order of magnitude of the vortical corrections produced by the strain associated
with the large-scale eddies impinging on the surface. An estimate of these corrections
was obtained by considering the enstrophy budget and balancing the stretching term
by nonlinear contributions and dissipation. The resulting estimate indicates that the
relative magnitude of the vortical corrections is proportional to Re∞

−1 and has a
maximum value of order Re∞

−1/3 in the part of the source layer closest to the
surface. This argument supports the validity of the HG theory at large time in
the high-Reynolds-number limit and predicts a nonlinear amplification of tangential
r.m.s. velocities smaller than Hunt’s (1984) correction. It explains why experiments
performed in stirred-grid tanks or LES results reported in CM agree quantitatively
well with the HG predictions and why significant discrepancies can be observed when
the turbulent Reynolds number is low, as is usually the case in DNS studies.

Based on this result, we showed that a leading-order expression for the pressure
disturbance induced by the surface can be derived from the full Navier–Stokes
equations without neglecting the main nonlinearities or the viscous term. Therefrom,
transport equations for the Reynolds stresses were formed and their implications were
studied within the framework of the HG approximation. Analytical results show that
at the time when the surface is inserted, φ22 is negative and the pressure–diffusion flux
lowers the turbulent kinetic energy within the surface-influenced layer. In the case of
freely decaying turbulence, further evolution is dominated by the imbalance between
dissipation (which is essentially left unaltered by the surface) and time-rate-of-change
of the energy components, resulting in a positive value of φ22 ranging from zero at the
outer limit of the source layer to 2

3
ε∞ at the edge of the viscous sublayer. The positive

sign of φ22 corresponds to an isotropization process and agrees with available DNS
results; moreover it does not contradict the fact that the tangential velocity variances
near the surface exceed their free-stream value at any time.

We finally considered the more complex case of steady spatially decaying turbulence
in which intercomponent energy transfer is governed by turbulent fluxes associated
with third-order moments. We derived a physically based model of the vertical
turbulent fluxes incorporating some basic features resulting from the HG theory and
we fitted this model using LES data. For moderate levels of inhomogeneity, the model
predicts a negative surface value of φ22, indicating that energy is transferred from the
normal velocity component towards the tangential components, in agreement with
numerical results available for open-channel flow.

Combining numerical results available for time decaying and spatially decaying
turbulence, it turns out that the intercomponent energy transfer near a flat surface de-
pends crucially on the nature (steady vs. decaying, homogeneous vs. inhomogeneous)
of the outer turbulence. In the present investigation we only considered the case where
this turbulence is (at least locally) isotropic. There is no doubt that if some anisotropy
is present in the free stream, it may also affect crucially the intercomponent energy
transfer (e.g. Wong 1985). The present analytical conclusions suggest that the HG
theory, combined with suitable closures of third-order moments in the case where the
outer turbulence is inhomogeneous in the Y-direction, is able to encompass this variety
of situations. Another implication of our analysis concerns one-point turbulence
models. It has been proposed in the past that intercomponent energy transfer due
to an impermeable surface can be modelled within the framework of second-order
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closures by adding an ‘echo’ term to the closure of the pressure–strain tensor (Launder,
Reece & Rodi 1975; Hanjalic & Launder 1976; Gibson & Launder 1978; Shih &
Lumley 1986). In most attempts this echo term was assumed to depend only on the
local anisotropy of the Reynolds stress tensor and on the distance to the surface. Given
the HG distribution of the velocity variances, such models predict negative surface-
induced values of φ22 in the situation considered in § 4.2 as well as in that of § 4.3,
and these values are identical in both cases. The present analytical predictions and
DNS/LES results indicate that in general such predictions are incorrect. Consequently
it appears that properties of the incoming turbulence have to be taken into account
in the modelling of the surface-induced contributions to the pressure–strain tensor.
An interesting attempt in this direction was proposed by Durbin (1993) whose elliptic
model is able to capture non-local effects.

This work was made possible by the inspiring source provided by the PhD work of
I. Calmet. I am greatly indebted to her for her continuous collaboration and welcome
suggestions. I am also very grateful to J. P. Bertoglio, P. Carlotti, J. C. R. Hunt and
F. Risso for stimulating and enlightening discussions on different parts of this work,
and to Victor C© for providing me with fine daily examples of high-Reynolds-number
free-surface turbulence.

Appendix A. Velocity gradients within the source layer
The rapid distortion theory was extended to turbulence distorted by a two-

dimensional bluff body by Hunt (1973), and subsequently to turbulence distorted by
a flat surface by HG. In the latter case, short-time RDT assumptions imply that the
velocity fluctuation v′(x, Y, z, t) at a distance Y from the surface simply differs from
the free-stream fluctuation v∞(x, Y, z, t) by an irrotational fluctuation ∇Φ(x, Y, z, t).
Hunt (1973) showed that the two-dimensional Fourier transforms Φ̂(k1, k3, Y, t) and
v̂

′(k1, k3, Y, t) of the velocity potential Φ and velocity fluctuation v′ are related to the
three-dimensional Fourier transform v̂∞(k, t) of the free-stream velocity fluctuation
through

Φ̂(k1, k3, Y, t) =

∫ +∞

−∞
βm(k, Y)v̂m∞(k, t) dk2, (A 1a)

v̂′
i(k1, k3, Y, t) =

∫ +∞

−∞
Mim(k, Y)v̂m∞(k, t) dk2, (A 1b)

where k1, k2 and k3 are the components of the wavenumber k along directions x, Y
and z respectively. From the relation v′ = v∞ + ∇Φ it is immediately apparent that
the ‘distortion’ tensor Mim is given by

Mim(k, Y) = δimeik2Y +




ik1βm(k, Y)

∂βm(k, Y)/∂Y
ik3βm(k, Y)


 , (A 1c)

with i2 = −1. If turbulence is homogeneous in planes (x, z) parallel to the surface,
the Laplace equation (5) becomes in Fourier space[

∂2

∂Y2
− kH

2

]
Φ̂(k1, k3, Y, t) = 0,
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kH = (k1
2 + k3

2)1/2 being the tangential wavenumber. The solution of this equation
satisfying boundary conditions (7b) and (11) is (e−kH Y/kH )

∫ +∞
−∞ v̂∞(k, t) dk2, v̂∞

being the normal component of v̂∞(k, t). Comparing with (A 1a) yields, after
HG,

βm(k, Y) =
1

kH

e−kH Yδm2. (A 2)

From (A 1)–(A 2) one deduces that the variance of the components of the velocity
gradient tensor 〈(∂v′

i/∂xj )
2〉 (no summation on i or j ) is related to the three-

dimensional velocity spectrum Φij (k) of the free-stream turbulence through

〈
(∂v′

i/∂xj )
2
〉

=




∫ +∞

−∞
kj

2M∗
im(k, Y)Min(k, Y)Φmn(k) d3k for j = 2,∫ +∞

−∞

∂M∗
im(k, Y)

∂Y
∂Min(k, Y)

∂Y Φmn(k) d3k for j = 2,

(A 3)

where d3k = dk1dk2dk3 and the star denotes the complex conjugate. Inserting (A1 a–c)
into (A 3) yields

〈
(∂v′

i/∂xj )
2
〉

=




∫ +∞

−∞
k2

j

{
Φii(k)+2

ki

kH

sin(k2Y)e−kH YΦi2(k)+
k2

i

k2
H

e−2kH YΦ22(k)

}
d3k, i = 2, j = 2,

∫ +∞

−∞
k2

j {1 − 2 cos(k2Y)e−kH Y + e−2kH Y}Φ22(k) d3k, i = 2, j = 2,

∫ +∞

−∞

{
k2

2Φii(k) − 2kik2 cos(k2Y)e−kH YΦi2(k)+ k2
i e

−2kH YΦ22(k)
}
d3k, i = 2, j = 2,

∫ +∞

−∞

{
k2

2 − 2k2kH sin(k2Y)e−kH Y + k2
H e−2kH Y}Φ22(k) d3k, i = 2, j = 2.

(A 4)

Equations (A 1)–(A 3) reveal that terms involving e−2kH Y in (A 4) correspond to the
contribution 〈(∂2Φ/∂xi∂xj )

2〉 whereas terms involving e−kH Y correspond to velocity
gradients produced by the interaction between the free-stream fluctuation and the
perturbation ∇Φ .

In what follows we consider that the free-stream turbulence is homogeneous and iso-
tropic. Since the essential contribution to the velocity gradients comes from the high-
wavenumber part of the spectrum, we approximate Φmn(k) by a Kolmogorov spectrum
with a sharp cut-off at the Kolmogorov wavenumber kK = ((2/3CK )(ε∞

1/3/ν))3/4, so
that

Φmn(k) = CKε∞
2/3(k2δmn − kmkn)k

−17/3 for k � kK, (A 5)

where CK is the Kolmogorov constant, k = ‖k‖, and ε∞ is the dissipation rate in the
free stream. Note that, since (A 5) does not describe correctly the energy distribution
at low wavenumber, it cannot be used to predict the distortion produced by the
surface at distances such that Y/L∞ = O(1). Consequently, the results derived in this
Appendix are essentially valid in the limit Y/L∞ → 0.
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For Y/L∞ large compared to unity, terms involving e−kH Y and e−2kH Y are negligible
in (A 4). Under such conditions one recovers the well-known result (Monin & Yaglom
1975, p. 56)

〈
(∂v′

i/∂xj )
2
〉

∞ =
ε∞/ν

15


1 2 2

2 1 2

2 2 1


 . (A 6)

In the limit Re∞ → ∞, kKL∞ is of order Re∞
3/4 (Monin & Yaglom 1975, p. 349) and

Y/L∞ is of order Re∞
−1/2 for Y = O(δV ). Hence the source layer of the HG theory

corresponds typically to kKY ranging from the order Re∞
1/4 to the order Re∞

3/4. To
obtain the variance of velocity gradients in the part of this layer closest to the surface,
we thus consider the intermediate limit kKY → ∞, Y/L∞ → 0. Under such conditions,
(A 1b, c) show that eddies with tangential wavenumbers typically smaller than 1/Y
are distorted by the surface whereas eddies with 1/Y � kH � kK are almost unaltered.
Expressions (A 4) may then be evaluated analytically in this intermediate limit by
using the properties of the Gamma function (Abramowitz & Stegun 1965, p. 374)
and integrating analytically hypergeometric functions (Abramovitz & Stegun 1965,
p. 258–260; Gradshteyn & Ryzhik 1980, p. 712). After lengthy algebra we obtain the
final result†

〈
(∂v′

i/∂xj )
2
〉
(Y) ≈ ε∞/ν

15


1 2 2

2 1 2

2 2 1


+

ε∞/ν

(kKY)4/3


 ∼0 0.116 ∼0

−0.201 0 −0.201

∼0 0.116 ∼0


 . (A 7)

Since kKY is large in the source layer, (A 7) indicates that the presence of the
surface has a negligible influence on 〈(∂v′

i/∂xj )
2〉 for i = 2 and j = 2, as well as on

〈(∂v′/∂Y)2〉. In particular it is worth noting that for Y = O(δV ), 〈(∂v′/∂Y)2〉 is almost
identical to its free-stream value while, according to the result of HG and to (A 9)
below, the value of 〈v′2〉 is reduced by a factor of order (Y/L∞)−2/3) = O(Re∞

1/3).
From (A 7) we also see that 〈(∂u′/∂Y)2〉 and 〈(∂w′/∂Y)2〉 increase as the surface is
approached, while 〈(∂v′/∂x)2〉 and 〈(∂v′/∂z)2〉 are reduced. Summation of results (A 7)
over i and j shows that the local pseudo-dissipation per unit mass is

ε(Y) = ε∞
(
1 − 0.173(kKY)−4/3

)
. (A 8)

Hence RDT predicts that the pseudo-dissipation is slightly reduced in the source
layer. In contrast, since in this approach the difference between the local value and
the undisturbed value of the velocity fluctuation reduces to an irrotational field, the
variance of vorticity fluctuations is not modified by the surface. Interestingly, the
kinematic relation S2 = ε(Y)/ν − ∂2〈v′2〉/∂Y2 linking the local value of the pseudo-
dissipation ε(Y) to the enstrophy S2/2 can be used to recover the near-surface
evolution of 〈v′2〉. Combining (A 8) with the fact that S2 = ε∞/ν everywhere yields,
after integrating twice and requiring that 〈v′2〉 → 0 for Y → 0,

〈v′2〉(Y) = 1.784ε∞
2/3Y2/3 + O

(
ε∞

2/3L∞
−1/3Y

)
, (A 9)

where we have set CK = 0.2555
9

≈ 1.528 (Townsend 1976, p. 98). The leading-order
term in (A 9) agrees with the result found by Hunt (1984). Note that this term is
independent of the low-wavenumber part of the energy spectrum, since only the

† Detail of calculations may be obtained on request from the author or the Journal of Fluid
Mechanics editorial office, Cambridge.
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high-wavenumber shape was specified in (A 5). Moreover, expanding the product
M22(k, Y)M∗

22(k, Y) in the limit kY → 0 shows that the contribution of low
wavenumbers to 〈v′2〉(Y) is of order Y2, i.e. the linear term in (A 9) is actually
zero.

To determine ∂2〈v′2
i 〉/∂Y2 (i = 2) in the limit Y/L∞ → 0, let us begin by evaluating〈

v′
i

∂2v′
i

∂Y2

〉
=

∫ +∞

−∞
M∗

im(k, Y)
∂2Min(k, Y)

∂Y2
Φmn(k) d3k. (A 10)

Using (A 1c), (A 2) and intermediate results obtained during the evaluation of (A 7),
we find 〈

v′
i

∂2v′
i

∂Y2

〉
≈ − 2

15
ε∞/ν +

18

455
�(1/3)

ε∞/ν

(kKY)4/3
, (A 11)

where � denotes the Gamma function. Now, adding results (A 7) (for i = 2 and
j = 2) and (A 11), we find

∂2〈v′2
i 〉

∂Y2
= 2

(〈
v′

i

∂2v′
i

∂Y2

〉
+

〈(
∂v′

i

∂Y

)2〉)
≈ 0.372

ε∞/ν

(kKY)4/3
for i = 2. (A 12)

This result can also be used to obtain the leading-order terms governing the variations
of 〈v′2

i 〉 (i = 2) in the limit Y/L∞ → 0. Integrating twice and requiring that the surface
value of 〈v′2

i 〉 matches the kinetic energy found at Y = 0 in (22) implies

〈u′2〉 = 〈w′2〉 = 3
2
u2−3.838ε∞

2/3Y2/3 + O
(
ε∞

2/3L∞
−1/3Y

)
. (A 13)

Expanding the products Mip(k, Y)M∗
iq(k, Y) involved in the expression for 〈v′2

i 〉(Y) in
the limit kY → 0 reveals that low wavenumbers provide a non-zero linear contribution
to the variance of the tangential fluctuations. The exact magnitude of this contribution
depends of the shape of the energy spectrum in the low-wavenumber range; its sign is
always positive, implying the existence of a minimum of the tangential r.m.s. velocities
within the source layer.

Equations (A 7), (A 9) and (A 13) can be used to deduce the evolution of the Taylor
microscales within the source layer. Since 〈u′2〉 and 〈w′2〉 increase by a factor of
3/2 when Y ranges from a value of order L∞ to a value of order Re∞

−1/2L∞, the
longitudinal and transverse microscales of the tangential fuctuations increase by a
factor (3/2)1/2 ≈ 1.22. In contrast, since 〈v′2〉 decreases by a factor Re∞

1/3 between
Y = O(L∞) and Y = O(L∞Re∞

−1/2), the transverse microscale associated with the
normal velocity, λ2T , decreases by a factor of order Re∞

1/6. More precisely, using (A 9)
we find that for Y/L∞ = 2Re∞

−1/2, λ2T decreases by (1.78)−1/2Re∞
1/6 compared to its

free-stream value. These results compare well with the numerical evolutions of the
Taylor microscales obtained by WLGR.

Appendix B. Pressure–velocity and pressure–strain correlations at t = 0

Since the surface is suddenly inserted in the flow at t = 0, the irrotational correction
∇Φ is zero for t < 0. For t > 0, the two-dimensional Fourier transform of Φ is given
by (A 1a) and (A 2). Consequently the velocity potential may be written at any time
in the form

Φ̂(k1, k3, Y, t) = H (t)
e−kH Y

kH

∫ +∞

−∞
v̂∞(k, t) dk2, (B 1)
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where H (t) is the Heaviside distribution. Equations (B 1) and (A 1a) give the normal
velocity fluctuation as

v̂′(k1, k3, Y, t) =

∫ +∞

−∞
[eik2Y − H (t)e−kH Y]v̂∞(k, t) dk2. (B 2)

From (19) it is clear that the pressure fluctuation at t = 0 is dominated by the singular
term −ρ∂Φ/∂t . Thus the leading-order contribution to the Fourier transform of the
initial pressure fluctuation p′(X, t → 0) is, according to (B 1),

p̂′(k1, k3, Y, t → 0) ≈ −ρδ(t)
e−kH Y

kH

∫ +∞

−∞
v̂∞(k, t) dk2, (B 3)

where δ(t) is the Dirac distribution. Using (B 2) and (B 3), the initial value of the
pressure–diffusion flux is found to be

− 1

ρ

∂〈p′v′〉
∂Y (Y, t → 0) ≈ δ(t)

∫ +∞

−∞
Φ22(k)

×
[
2H (t)e−2kH Y −

(
cos(k2Y) +

k2

kH

sin(k2Y)

)
e−kH Y

]
d3k. (B 4)

From (B 4) the integral of the pressure–diffusion term from t = 0− to t = 0+ can be
evaluated by noting that∫ t=0+

t=0−
δ(t)H (t) dt =

∫ t=0+

t=0−
H ′(t)H (t) dt = 1/2.

It is immediately apparent that the resulting quantity is zero at the surface and a
Taylor expansion shows that it is negative for all Y for wavenumbers such that
kY � 1. Since low wavenumbers dominate the integral in (B 4), one can infer that
the time integral of the pressure–diffusion flux is negative throughout the surface-
influenced layer. Using (B 2)–(B 3), the pressure–strain correlation in the vertical
direction is also found to be〈

p′

ρ

∂v′

∂Y

〉
(Y, t → 0) ≈ δ(t)

∫ +∞

−∞
Φ22(k)

[
k2

kH

e−kH Y sin(k2Y) − H (t)e−2kH Y
]

d3k. (B 5)

By a similar argument it is straightforward to show that the integral of this term
from t = 0− to t = 0+ is also negative everywhere.

Appendix C. Revisiting Hunt’s (1984) nonlinear correction
Hunt (1984) derived a nonlinear correction to the original HG theory from a

formal analogy with results obtained by Durbin (1981) in the analysis of the rapid
distortion of turbulence near the front stagnation point of a sphere. In the situation
considered by Durbin, a turbulent field with characteristic intensity V∞ and integral
length scale l∞ is convected towards a sphere of radius R by a mean flow of speed
U∞ far upstream. The changes in the mean flow due to the presence of the sphere
produce strains of order U∞/R close to the sphere surface; these strains distort the
turbulent vorticity field, resulting in a change (	V)2 of velocity variances. Durbin
evaluated analytically (	V2) in the limit case of ‘small-scale turbulence’ (Hunt 1973)
for which the mean flow variations are negligibly small over one integral length scale,
i.e. l∞/R � 1. He found that at a distance d from the front stagnation point such that
d/R � 1, all three velocity variances are amplified by an order V∞

2(d/R)−1/2, the
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amplification of the normal (streamwise) component being twice that of the tangential
ones. His analysis excludes the source layer corresponding typically to d < l∞, where
the normal velocity falls to zero at the sphere surface. As usual in RDT approaches,
Durbin’s conclusions are valid under conditions ensuring that nonlinear contributions
of large eddies to advection and stretching can be neglected in the vorticity equation,
implying V∞/U∞ � 1 and V∞/l∞ � U∞/R (Hunt 1973; Goldstein & Durbin 1980).
Summarizing, Durbin’s conclusions can be collected in the form

(	V)2 = O

(
V∞

2

(
d

R

)−1/2
)

for
l∞

R
<

d

R
� 1 (C 1)

provided

V∞

U∞
� l∞

R
� 1. (C 2)

The nonlinear correction derived by Hunt (1984) is based on the idea that Durbin’s
results are applicable to the source layer near a flat surface, because small-scale eddies
of size l and velocity u(l) entrained by large eddies impinging on the surface ‘feel’
the flow due to these eddies as an axisymmetric slowly evolving flow. To check this
idea, we may rewrite (C 1)–(C 2) for the present problem by replacing all quantities
by their counterparts. Scales V∞, l∞ and d must obviously be replaced by u(l), l

and Y, respectively, and the ‘mean’ flow is now characterized by the r.m.s. velocity
far from the surface, u∞. Replacing R requires a little more physical reasoning. In
(C 1) R characterizes the thickness of the region surrounding the sphere where mean
velocity gradients are significant. In our problem, the counterpart of this region is
the surface-influenced layer whose typical thickness is L∞. In contrast, in (C 2) R

appears because mean velocity gradients are of order U∞/R close to the sphere. In
Appendix A we showed that the r.m.s. velocity gradients are of order u∞/(L∞

1/3Y2/3)
in the source layer, from which we deduce that R must be replaced by L∞

1/3Y2/3 in
(C 2). Furthermore we note that small-scale eddies of size l certainly belong to the
inertial subrange, in which case the inertial scaling implies u(l) = u∞(l/L∞)1/3 (Hunt
& Carruthers 1990). Introducing all these scales in (C 1)–(C 2) gives the change (	u)2

experienced by the velocity variances near the surface as

(	u)2 = O

(
u∞

2

(
Y
L∞

)−1/2
)

for
l

L∞
<

Y
L∞

� 1 (C 3)

provided (
l

L∞

)1/3

� l

L∞

(
L∞

Y

)2/3

� 1. (C 4)

We see that the first inequality in (C 3) requires l/Y < 1, whereas the first inequality in
(C 4) is equivalent to (l/Y)2/3 � 1. Consequently there is no subrange of eddies of size
l where nonlinear stretching and direct influence of the surface can both be neglected.
This makes Hunt’s (1984) estimate of the amplification of small-scale vorticity in the
surface-influenced layer questionable. On the other hand, we note that Hunt (1973)
solved the case of small-scale turbulence approaching the front stagnation point of a
circular cylinder. His calculation, where both stretching by the mean flow field and
blocking by the surface are taken into account, shows that the zero-wavenumber
value of the one-dimensional spectrum of the normal velocity is indeed increased by
the mean strain rate and behaves as (Y/L∞)−1/3 near the surface (equation (6.36b)
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and figure 13 of the original paper). Hence, even though we believe that the direct
analogy between Durbin’s (1979) results near a sphere and the source layer near a flat
surface is questionable, there is no doubt that, if viscous mechanisms are disregarded,
nonlinear vortex stretching by large-scale motions leads to an amplification of the
velocity variances near the surface.
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